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SHORT CUTS IN CREEP BUCKLING ANALYSISY
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Abstract—It is shown that the creep buckling of slender or thin-walled structures whose material deforms
elastically as well as in consequence of time-hardening creep can be analyzed first as if the deformations were due
entirely to steady creep. The results of this analysis can be easily modified to account for time-hardening creep
and this modification does not involve any approximation when the time-hardening creep strain rate is expressed
as the product of a function of stress by a function of time. The effect of simultaneous linearly elastic deformations
can be taken into account by multiplying the critical time obtained for steady creep by a numerical factor. This
correction involves no farther-reaching approximations than the usual steady-creep buckling analysis itself.

NOTATION

amplitude of initial deviations

total cross-sectional area of column

amplitude of additional elastic displacements
amplitude of steady creep displacements

constant in creep law (4)

Young's modulus of elasticity

functionof x and y

operator

operator

shear modulus

operator; also distance between flanges of idealized column
operator

moment of inertia of cross section of column

second invariant of stress deviation tensor defined in (8)
factor of proportionality in creep law (49)

constant defined in (42)

length of column

exponent in creep law (22}

exponent in creep law (49)
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scalar

axial compressive load acting on column
P Euler’s buckling load for column [see {(47)]
q exponent of time in time-hardening creep law
r scalar
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ijth component of stress deviation tensor

t time measured from instant of load application
[ critical time
ty Euler time defined in (61)

additional displacement normal to surface of structure; also non-dimensional additional lateral dis-
placement of column [see {32)]

W initial deviation normal to surface from perfect shape of structure

W0 total non-dimensional lateral displacement (elastic plus creep) of column

X coordinate on surface of thin structure; also non-dimensional axial coordinate for column [see (35)]
x* axial coordinate for column

¥ coordinate on surface of thin structure; also additional lateral displacement of column
Yo initial deviation of center line of imperfect column from straight axis

¥ amplitude of total displacements of column [see (51)]

3 Kronecker’s delta defined in (7)

Ax change in curvature of column

e Euler strain defined in (61)

&; ijth component of strain tensor

Eom nominal strain rate defined in (61)

v Poisson’s ratio

o intensity of loading

Oy Euler stress defined in (61)

oy ijth component of stress tensor
D, 1, Q  operators

Subscripts:

cr critical

e external (convex) side of column

i internal {concave) side of column

0 refers to conditions at instant of load application

I refers to conditions at time ¢,

STATEMENT OF THE PROBLEM

Many theoretical analyses of creep buckling have been published in the last few years on
the basis of the assumption that the deformations of the thin or slender structural elements
are due exclusively to secondary, or steady, creep. In reality all these elements are capable
of deforming elastically at the same time when they creep and often the creep deformations
of the material are due to primary creep rather than to secondary creep. Of course, inclusion
of elasticity and secondary creep in the study complicates the calculations.

1t is the purpose of the present report to show that in many cases of practical importance
it is permissible to carry out the major portion of the analytical work on the basis of the
assumption that the deformations are due exclusively to secondary creep, and to apply
corrections for elasticity and primary creep only as the last phase of the treatment of the
problem.

The correction here proposed for primary (rather than secondary or steady) creep is
rigorous; it does not involve any approximation. The correction for elastic deformations
following Hooke’s law is just as rigorous as the steady creep buckling analysis itself if the
latter is based on a single-term representation of the shape of displacements and if this
shape is the eigenfunction of the elastic problem corresponding to the lowest eigenvalue.
In the unusual case when the creep buckling analysis is carried out with greater rigor, the
multiplying factor here proposed still represents a good approximation in most cases.

This multiplying factor first appeared in the creep buckling literature in papers by
Kempner {1] and Hult [2]. It was found as the solution of the differential equation of the
column that creeps under the assumption that the deflected shape is the first eigenfunction
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of the equations of the linearly elastic column in spite of the nonlinear character of the
creep law. The factor appears in the same manner in the senior author’s report {3] on which
the example at the end of the present paper is based. The senior author suggested the same
correction factor for rectangular plates under uniaxial compression [4], but without any
proof of its correctness. But the factor itself has been used for many years for the calculation
of the perfectly elastic structures of civil engineering ; in Timoshenko’s Strength of Materials
[5] its discovery is attributed to J. Perry in 1886.

In the present paper the applicability of the correction factor is extended to thin-walled
structures of all kinds. The conditions are given under which use of the factor does not
introduce any inaccuracies in the analysis beyond those already inherent in the analysis
of the creep buckling of the structure in the presence of steady creep.

GOVERNING EQUATIONS

In the case of columns, plates and shells the problem, as a rule, can be stated mathematic-
ally as a set of equilibrium equations

(D(xoyv Wo, W, p) = 0 (1)
a set of strain—displacement relations

IJI(WO’ w, 8ij) =0 (2)

a set of boundary conditions
Qx,y,w) =0 on boundaries y = g{x) (3)

and the constitutive equation encompassing elastic and time-hardening creep deformations
: . 1-2v | "
6 = (1/2G) Sij*‘g‘(’fj'_‘j)okkéij +CJysit. 4

In these equations x and y are suitable coordinates on the surface of the structural element,
wo = welx, y) represents initial deviations of the surface in its unstressed state from an
ideal shape in which the external loads give rise to only a membrane state of stress,
w = w(x, y)is the additional displacement in consequence of elastic and creep deformations,
p is a scalar factor defining the intensity of the external loads, g;; is the ijth component of the
strain tensor, g;; is the ijth component of the stress tensor, s;; is the ijth component of the
tensor of stress deviation defined as

8= Uij"(1/3)0'kk5ij (5)

repeated letter subscripts indicate summation over the values 1-3 and thus the average
principal stress is

64 = (1/3)ayy = (1/3){(0,,+06,,+0633) 6)

the Kronecker delta is defined by
1 wheni=j
v ={0wheni;&j
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the second invariant of the stress deviation tensor is
Iy = (1/2)5ij5ji (8)

G is the shear modulus characterizing linear elastic deformations, v Poisson’s ratio, ¢ the
time lapsed from the instant when the loads were applied, C, m and g are constants
characterizing the creep deformations, @, ¥ and Q represent functional relations and the
dot above symbols indicates a differentiation with respect to time. The numerical value of m
is usually between 1 and 7, and that of g is usually 1/3.

THE CASE OF PURELY ELASTIC DEFORMATIONS

The governing equations simplify considerably when the deformations are purely
elastic. It will now be assumed that in the case when the constitutive equation (4) is

1-2v
& = (1/2G)[Sij+makk5ij:| 9)
the governing equations can be reduced to the appropriate boundary conditions and to the
single differential equation

Fw+pHwy+pHw = 0 (10)

where F and H are linear differential operators which may, or may not, involve multipliers
dependent on x and y. Examples of such equations are the plate equation (see, for instance,
equation (250) on p. 394 of Timoshenko’s classical book [6]) and Donnell’s equation of the
circular cylindrical shell (which is easy to obtain from equation (6) of one of Donnell’s
classical papers {7]).

It is further assumed that when the structural element is perfect,

wolx,y) = 0 (11)
there exist eigenvalues p = p,, and a corresponding complete set of eigenfunctions
w = f(x,) (12)

for which both the boundary conditions and (10) are identically satisfied when w, = O:
Fw+pHw = 0. (13)
This implies that
Ff(x,y) = pglx, y)

(14)
Hf(x,y) = —rg(x, )
where p and r are scalars. It follows then that the eigenvalue is
Por = P/ (15)

Let it be assumed now that the imperfect shell is characterized by

wo = af (x, y) (16)
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where ais the amplitude of the eigenfunction f(x, y}). The solution of (10) can then be written
in the form

w = bf (x, y). (17
Indeed, substitution in (10} yields the algebraic equation
pb—pra—prb = 0 (18)
from which the amplitude b of the deformations caused by the loads follows as
b=atl_. (19)
p—pr

Division of numerator and denominator by r and consideration of {15} lead to the ex-
pression

b=art_ (20)
PP
It can be seen that the amplitude of the additional displacements of an initially imperfect
structure increases beyond all bounds as the intensity of loading approaches the critical
value. One should aiso note that the amplitude a+ b of the total displacements is

atb =aLte @1)
PP

THE CASE OF PURELY STEADY-STATE CREEP DEFORMATIONS
In this case the constitutive equation (4) is reduced to
&y = CJTs;; 22)

which is known as Qdqvist’s law. After a load system of prescribed intensity p has been
applied, any initial deviation wy(x, y} is augmented with time. As the creep deformations
are considered to be permanent, the natural, unstressed state of the shell at ¢, which can be
designated as wq(x, y, 1), is, in general, different in shape and magnitude from wg(x, y, 0) at
the moment of load application. The first problem of the creep buckling analysis can thus be
stated as the determination, from equations (1}~(3) and (22), of the creep deformation rate
w(x, y, t) at ¢t when the unstressed state of the shell is characterized by wo(x, y, t).

The problem is a difficult one because of the nonlinearity of (22) when m > 0. No
rigorous, closed form solution of any problem of this kind is known to the authors. The
usual approach to an approximate solution consists of assuming w(x, y, 1) to be proportional
to the eigenfunction f(x, y) corresponding to the lowest eigenvalue of the eigenvalue
problem obtained by replacing (22) with (9), and satisfying the governing equations in some
approximate manner, for instance, by the collocation method. An improvement on this
method of solution consists of expanding the solution into a series of the eigenfunctions with
unknown coefficients and requiring that the multipliers of each eigenfunction vanish.

It is of great importance to engineers to know that the ratio of the coefficient of the
second eigenfunction to that of the first eigenfunction has been found very small during the
major part of the creep process in all those cases in which it was investigated. Such studies
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were carried out for columns in 1954 [8] and for flat rectangular plates in 1969 [9]. In
addition, the results of the theory have been found to agree with the results of experiments
in an engineering approximation. It can be concluded, therefore, that it is permissible to
base the analysis on the assumption that both the elastic and the creep deformations have
the shape of the eigenfunction corresponding to the lowest eigenvalue.

As at any given time ¢t the deflection rate of the column depends only on the state of
deflections, one can write

Wwx, y) = ¢f(x, y) = Hc) fix, y) (23)

where f(x, v} is the eigenfunction of the linearly elastic problem corresponding to the
lowest eigenvalue and h(c) is a function of the amplitude alone when p is prescribed.
The second problem of the creep buckling analysis is the integration of (23). Formally

one may write
dc
dt = | .
f J hic) (24)

In all the problems solved up to now for m > ( a finite time t, was found at which the

deformations tended to infinity. Hence the critical time ¢, can be defined as
7 de

Cr. st o h((’)

where ¢ is the magnitude of ¢ at the time when the loads are applied and t,, , is the critical
time in the presence of steady creep.

t (25)

SIMULTANEOUS NONLINEAR TIME-HARDENING CREEP AND
LINEARLY ELASTIC DEFORMATIONS

Equation (25) gives the critical time of the structure when the only mechanism of
deformation is steady creep. When the creep deformations are of the time-hardening type,
{22) is replaced by

&; = CtiJ%s,. (26)

Here t? can be considered as a constant multiplier of C in all the differentiations and integra-
tions. Thus inclusion of this power of time in the analysis simply leads to

r de
dt = | — 27

J hic) (27)
in the place of (24). It follows then that the critical time for time-hardening creep can be
calculated from

1

~—z‘g“ (28)
g+1

i & tcr.s!

where ¢, . , is the critical time in the presence of time-hardening creep.
When, in addition, the structure is capable of linear elastic deformations, every smali
increment ¢ dt in the creep deformations is magnified by the factor p,/(p., — p) in agreement
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with (21). Thus h(c) in the last member of (23) is multiplied by this factor which remains a
constant during the integration with respect to time provided the intensity of the loading
remains constant. It follows then that the critical time ¢} in the presence of simultaneous
time-hardening creep and elastic deformations ic

_ 1/4g+ 1)
i = [<q+1>~”—@-‘3ta.s,] : (29)

cr

GENERALIZATION

The arguments presented are valid if Odqvist’s law of (22) is replaced by some other
creep law that expresses the strain rate as a function of the stresses, and when the time
function in (4) is not a power function. It is only necessary that the creep rate should be given
as a function of stress multiplied by a function of time. Of course, equations (26}29) must
be modified if #? is replaced by some other function.

EXAMPLE

To illustrate. the statements made, the simple example of the idealized column of
constant cross section simply supported at its two ends and loaded in uniform axial com-
pression will now be worked out. At first it will be assumed that the material of the column
deforms only linearly elastically. The notation is shown in Figs. 1 and 2; the analysis is
similar to that presented in 3].

FiG. 1. Idealized column.
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A/2 A/2
o 0

A

F1G. 2. Cross section of idealized cotumn.

The conditions of equilibrium are:
(4/2)(6;+0,) = P (30)
(Ah/4)(6;—0,) = P(yo+y) (31)

where o is the stress in the internal (concave) flange of the idealized column, o, is the stress
in the external (convex) flange of the column and both are counted positive if they are
compressive ; P is the axial load, also positive if compressive; A/2 is the cross-sectional
area of one flange; y, and y are the small initial and additional lateral displacements.
If the notation
y Yo

W= Wy = — 32
is introduced, where h is the distance between the flanges of the idealized column, the
equilibrium equations can be written in the form

o; = (P/AY(14+wo+w) G, = (P/AY1 —wo—w). (33)

These two equations take the place of (1) in the general case.
The small change Ax in the curvature of the column during the transition from the
1nitial shape y, to the shape y,+y is

Ak = —3%y/ox*? (34)
where x* is the distance from one of the supports. With the notation
x = x*/L (35)

equation (34) can be written in the non-dimensional form
Ax = —(h/2L*)(0*w/dx?). (36)
But the curvature can also be expressed in terms of the strains ¢; on the internal (concave)

and ¢, on the external (convex) side of the column (the strains are considered positive when
they are compressive):

Ak = (1/h)(g;—&,). 37)
Hence the strain—displacement relation (2) becomes
(0*w/ox?)+(2L%/h*)(e;—¢,) = 0. (38)

This corresponds to (2) in the general derivation.
The boundary conditions can be given in the form

w = (0*w/dx?) =0 whenx = 0,1 (39)
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and the constitutive equation (4) in the case of exclusively elastic uniaxial deformations
reduces to

¢ = g/E. (40)
Substitution from (33) and (40) in (38) yields the differential equation
(6*w/ox?)+ PK*wy+ PK?w = 0 (41)
where
K? = 4L*/EAR®. 42)

This is (10) if F = 6/0x* and pH = PK?2,
When the column is perfectly straight,

wg =0 43)
and (41) reduces to
(0*w/0x*)+PK*w = 0 (44)

which corresponds to (13) in the earlier derivations. This equation and boundary conditions
{39) are satisfied by

w = sinnx = f(x, y). 45)
From (13) and (14) one obtains

Fw= —n’sinnx = pglx,y) p=P

(46)
Hw = K?sinnx = —rg{x, y)
and (15) yields the critical value of the axial load
2 A(h/2 2 2E
P =P, =pir— k2 =LAWL _THL_ @

L? L?

which is the lowest eigenvalue of the homogeneous differential equation (44) in the presence
of boundary conditions (39). It is known as the Euler load. The quantity I = A(h/2)? is the
moment of inertia of the section of the idealized column.

It follows then from (17) and (21) that in the presence of initial deviations w in the shape
of the first eigenfunction (45) the sum of the initial and the additional deformations becomes

P

W =4
PE—P

sin 7x. (48)
Next the case of purely steady-state creep deformations will be investigated. Under these
conditions (4) simplifies to
é=¢=ko" 49
with
n=2m+1 k=2C/3m*1, (50)
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Use will be made of the elastic analogy of [10] and the instantaneous deflected shape at t as
caused by elastic and creep deformations will be designated by the symbol w,,,. It will be
represented by

Weor = 7 SIN TX (51

which is the eigenfunction corresponding to the lowest eigenvalue of the elastic problem
multiplied by the coefficient y. When the axial load P is acting on this analogous deflected
column, equilibrium requires that

o, = (P/[A) A +wy) 0, = (P/A)1—wy,). (52)

The additional deformation w,, of this non-linearly elastic column will be assumed to be
represented by the first term of the infinite series

W = Csinmx+ ..., (53)

The deformation law of the analogous column is

¢ = ko, (54)
On the basis of (38) the strain—displacement relation of the analogous column is
(0%W,qg/0x)+ (2L /h%)(e;—e,) = O. (55)
If n is taken as 3, it follows from (52) and (54) that
&—&, = 2k(P/A)3(3W,m + erm)- (56)
But
(sin x)® = (3/4) sin mx —(1/4) sin 37x. (57)

Since the terms sin 3zx, sin 57x, . .. were omitted from equation (53), the present analysis
deals only with multipliers of sin nx. Thus (56) becomest

£;—e, = 2k(P/A)*[3y +(3/4)y’] sin nx. (58)
Substitution from (53) and (58) in (55) and omission of the common trigonometric multiplier

yield
—n?c+6k(2L*/h*)(P/A)’[y +(1/4)y*] = 0. (59)

This can be solved for the amplitude ¢ of the additional displacements of the analogous
elastic column:

¢ = (6k/m*)(2L*/R*)(P/AV [y +(1/4)y°]. (60)
Symbols will now be introduced for the following physical quantities:
o = Pg/A = 2(7;,2—/1;_)7 is the Euler stress
7{2
e = og/E = Z(ﬂh—)z is the Euler strain
énom = ko = k(P/A)® s the nominal (initial) strain rate e
tr = Ep/€nom is the Euler time.

+ In a similar manner, the higher harmonics should be dropped when the displacements are expressed by
double Fourier series, or by some other orthonormal double series, in the case of two-dimensional problems.
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With these symbols (60} can be written in the form

¢ = B3/4)1/te)dy +7°). (62)

This is the amplitude of the additional displacements of the nonlinearly elastic analogous
column. But in view of the elastic analogy this is also the rate of change of the amplitude of
the creep deformations of the column that deforms nonlinearly in consequence of steady
creep. Thus for the column that deforms only in steady creep from the state characterized
by w,,, according to (51) the rate of change of the creep deformations becomes on the basis
of (51) and (53)

Wi = 7 sinx = (3/4)(1/tg)(4y +y°) sin nx. (63)

Since y = dy/dt, if the only mechanism of deformation were steady creep, the time required
to reach a deformed state characterized by the amplitude y, would be given by the integral

Y14+ yé))
yH(4+7y7)

=@ [T~ e, lg(

(64)
o 4y +7y

Thecritical time of creep buckling is defined as the time at which the amplitude ¢, approaches
infinity. Hence

44yl
to = (1/6)t lg( ~ 0). (65)
Yo
This is the formula obtained for this case in [3].
When the creep law is the time-hardening law
¢ = ko™t (66)

the effect of time hardening can be followed up by replacing k with kt? in every step of the
foregoing derivations. It is easy to see that in such a case (63) is replaced by

7= ay/or = B/t Ey+7y°). (67)
The integral of this equation is

' e "oy ¥ +73)
1 de = = (4/3)t f ey lg LT 68
Jo q+1 B, dy+y° oy S+ (©8)

The effect of linear elastic deformations can also be taken into account without difficulty.
Whenever creep causes an increase dy in the amplitude of the deformations, this increase is
magnified by the factor Pg/(Pg— P) because of the elasticity of the material. Since this
factor is constant with time, (67) has to be modified to read

dy/dt = [Pp/(Pg— P))(t*/1)(4y —7?) (69)

and the time to reach the prescribed displacement amplitude y, becomes

Y14 +73)

q+1 _ -
(1Ag+D]*™ " = (1/6)[(Pg— P)/Peltg g IR

(70)
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The critical time t* of the column whose material deforms simultaneously because of time-
hardening creep and linear elasticity can thus be calculated from the equation

4 2
(Ag+D)ed™ ! = (1/6)[(Pg— P)/Pglt; g -*:;yo (7h
0
or from
4442) W+ D)
th = {(q-*l)(tgffi)E(Pg—P)/Ps} lg ;’O} . (72)
0

This expression corresponds to (29). It also agrees with the result of the analysis of [3]if ¢
is set equal to zero; this is necessary since the calculations of [3] were carried out for a
column that deforms elastically and because of steady creep.
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AGCTPAKT—VYKA3aHO, YTO BHITYYMBAHME TIPU TION3YMECTH THOKMX MIIM TOHKOCTEHHBIX KOHCTPYKUMA,
MaTeEpHAT KOTOPHIX aedopMupyercs B ynpyroit obnactu Takke BCHENCTBHE FIOA3YYECTH CBH3AHHOU C
YTIPOCHEHHEM BO BPEMEHH, MOXHO OOCYKAATE B IEPBAIX KaK AehOPMANMH, BbI3BAHHbIE NIOSIHOCTHIO BCACA-
CTBHE YCTAHOBMBLIEHCS cTamuy ToN3yyecTd. Pe3ynbTaTsl NpEIaraeMIuro aHanu3a MOXHO JIeTKo Moaudu-
HYPOBATh C HENBIO YYETA NON3YUECTH YIPOYHEHHS BO Bpemenu. Takas MoauduKkauus He TpedyeT HUKAKOTO
NPHOIMKEHHA NS CIy4ast, KOrja CKopocTk aedopMaiymy MON3y4eCcTH YIPOUHEHNS BO BPEMEHH BBIPKEHA
npousBeAeHHeM QYHKUWM HANPAKEHUs YMHOXEHHOH Ha QyRAKUMIO BPEMEHHU.

DbdekT COBMECTHBIX JIMHENHO yrpyrux aedopManmii MOXHO YYUTHIBATb, YMHOXAA KPUTHYECKQE
BpeMS, TOTYUEHHOE AJS YCTAHOBUBLLEHCH HOJI3YYECTH HA YMCIIEHHBIH QaxTop. DTa KOPPEKTYPa He TpebyeT
HHKAKMX JaJiee JOCTHAralomux npubmnkenuit Kax oOpIKHOBEHHRIN ananu3 BuINyynBas AN Cnyuas yCHRHOB-
vBUIeHCH TOAIYYECTH.



